Estimating 3D Strain from 4D Cine-MRI and Echocardiography: In-Vivo Validation
نویسندگان
چکیده
The quantitative estimation of regional cardiac deformation from 3D image sequences has important clinical implications for the assessment of myocardial viability. The validation of such image-derived estimates, however, is a non-trivial problem as it is very difficult to obtain ground truth. In this work we present an approach to validating strain estimates derived from 3D cine-Magnetic Resonance (MR) and 3D Echocardiography (3DE) images using our previously-developed shape-based tracking algorithm. The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely linear elastic model, which accounts for the fiber directions in the left ventricle. The dense motion field is in turn used to calculate the deformation of the heart wall in terms of strains. The strains obtained using our algorithm are compared to strains estimated using implanted markers and sonomicrometers, which are used as the gold standards. These preliminary studies show encouraging results.
منابع مشابه
4D flow jet shear layer detection method for the measurement of effective orifice area and assessment of aortic stenosis severity
Background Aortic stenosis (AS) is the most common cause of valve replacement and its severity is mainly assessed by transthoracic Doppler echocardiography (TTE) to quantify valve effective orifice area (EOA) as determined by the continuity equation. In a previous study we demonstrated that EOA can be directly determined with 2D flow MRI downstream of the AS using the jet shear layer detection ...
متن کاملPhysically-Constrained Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI
Analysing heart motion provides crucial insights on the condition of the cardiac function. Tagged-MRI and 2D-strain ultrasound enable quantitative assessment of the myocardium strain. But estimating 3D myocardium strain from cine-MRI remains attractive: cine-MRI is widely available and it yields detailed 3D+t anatomical images. This paper presents an image-based method to estimate myocardium st...
متن کاملA real-time 3-dimensional digital Doppler method for measurement of flow rate and volume through mitral valve in children: a validation study compared with magnetic resonance imaging.
We developed and assessed a real-time 3-dimensional (3D) digital Doppler method for measurement of flow volumes through the mitral valve in children. A total of 13 children (aged 10.46 +/- 2.5 years; 8 boys/5 girls) were enrolled. An ultrasound system (Sonos 7500, Philips, Andover, Mass) was used to acquire raw 3D velocity data for flow measurement based on Gaussian control surface theorem [flo...
متن کاملImproved assessment of aortic 3D blood flow with combined k-t accelerated 3D CINE bSSFP & 4D flow MRI
Background To determine hemodynamic parameters from 4D flow MRI, vessel boundaries are typically depicted by calculating a 3D phase contrast MR angiogram (PC-MRA) from 4D flow magnitude and flow images. However, this approach is limited by 1) low blood-tissue contrast of the magnitude images and 2) velocity weighting of PC-MRA may not fully depict areas of slow or swirling (vortex) flow. As a r...
متن کاملAn Effective 3-Dimensional Regional Myocardial Strain Computation Method with Displacement ENcoding with Stimulated Echoes (DENSE) in Dilated Cardiomyopathy Patients and Healthy Subjects
Fast Cine Displacement ENcoding with Stimulated Echoes (DENSE) is a magnetic resonance imaging (MRI) technique attributed with higher spatial resolution and rapid post-processing. Our primary goal was three-dimensional (3D) regional strains quantification using DENSE images in healthy subjects and non-ischemic, non-valvular dilated cardiomyopathy (DCM) patients, followed by validation with comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000